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ABSTRACT 

This paper addresses the problem of global practical output tracking for a class of high-order time-delay 

uncertain non-linear systems via state feedback. On the basis of the homogeneous domination technique, 

under mild conditions on the system nonlinearities involving time delay, we construct a homogeneous state 

feedback controller with an adjustable scaling gain. With the aid of a homogeneous Lyapunov-Krasovskii 

functional, the scaling gain is adjusted to dominate the time-delay nonlinearities bounded by homogeneous 

growth conditions and make the tracking error arbitrarily small while all the states of the closed-loop system 

remain to be bounded.  Finally, a simulation example is given to illustrate the effectiveness of the tracking 

controller. 

Keywords: Output Tracking, Time-Delay Nonlinear Systems, State Feedback, Homogeneous Domination 

Technique 

 

1. INTRODUCTION 

 

This paper addresses the global practical output 

tracking problem for a class of uncertain nonlinear 

systems with time-delay which is described by 
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where T
1( ) ( ( ), , ( ): ) n

nx t x t x t R  , ( )u t R , and

( )y t R  are the system state, control input and 

output, respectively. The constant 0d   is a given 

time-delay of the system, for 1,i  …, ,n and the 
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system initial condition is

0( ) ( ), [ , 0] .  x d    The terms ( )i  

represent nonlinear perturbations that are continuous 

functions and 1 : { [0, ) :i oddp R p q p    and q  

are odd integers, p q } ( 1, , 1)i n  are said to be 

the high orders of the system. 

 

Global practical output tracking problem of 

nonlinear systems is one of the most important and 

challenging problems in the field of nonlinear 

control and has received a great deal of attention. By 

posed some conditions on system growth and power 

order, the practical output tracking problem of 

system (1) has been well-studied and a number of 

interesting results have been achieved over the past 

years, see [1-10], as well as the references therein. 

However, the aforementioned results have not 

considered the time-delay effect which is actually 

very common in state, input, and output due to the 

time consumed in sensing, information transmitting, 

and controller computing. It is well known that time-

delay phenomena exist in many practical systems 

such as electrical networks, microwave oscillator, 

and hydraulic systems, etc., due to the presence of 

time delay in systems, it often significant effect on 

system performance, it often causes deterioration of 

control system performance and may induce 

instability, oscillation. Therefore, the study of output 

tracking and stabilization of time-delay nonlinear 

systems has important practical significance and has 

received much attention in recent years. In recent 

years, by employing the Lyapunov-Krasovskii 

method to deal with the time-delay, control theory, 

and techniques for stabilization problem of time-

delay nonlinear systems were greatly developed and 

advanced methods have been made; see, for instance, 

[11-20] and reference therein. Compared with study 

the stabilization problem contain time-delay, the 

theory of output tracking control developed slower. 

In the case when the nonlinearities contain time-

delay, for the output tracking problems, some 

interesting results have been obtained [21-24]. 

However, the contributions only considered the case

1ip for the system (1). When the system under 

consideration is inherently time-delay non-linear, i.e. 

the case 1ip , the problem becomes more 

complicated and difficult to solve, and not many 

results have been reported in the literature for such a 

nonlinear system. To the best of our knowlege, due 

to no unified method being applicable to nonlinear 

control design, many interesting and important 

output tracking control problems for time delay 

inherently nonlinear systems unsolved yet.  

 

In this paper, we aim to solve the problem by 

using the state feedback domination approach. First, 

on the basis of the homogeneous domination 

technique [26, 27, 14], under mild conditions on the 

system nonlinearities involving time delay, we 

construct a homogeneous state feedback controller 

with an adjustable scaling gain. Then, with the aid of 

a homogeneous Lyapunov-Krasovskii functional, 

the scaling gain is adjusted to dominate the time-

delay nonlinearities bounded by homogeneous 

growth conditions and make the tracking error 

arbitrarily small while all the states of the closed-

loop system remain to be bounded.  The simulation 

results show the effectiveness of the proposed 

method.  The main contribution of this paper is 

highlighted as follows.  By comparison with the 
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existing results in [21-24], due to the appearance of 

high-order, time-delay and nonlinear assumption, 

how to construct an appropriate Lyapunov-

Krasovskii functional for system (1) is a nontrivial 

work. 

 

2. MATHEMATICAL PRELIMINARIES 

 

At first, we give the following notations which 

will be used in this study. 

Notations: nR  denotes the real 𝑛-dimensional 

space and : [0, )R   . For any vector 

1( , , ): T n
nx x x R  , denote 

1: ( , , ) ,T i
i ix x x R   1, ,i n   and || ||x  

denotes Euclidean norm of x . A function

: nf R R is said to be kC -function, if its partial 

derivatives exist and are continuous up to order

, 1 .k k    A 0C  function means it is 

continuous. A C function means it is smooth, that 

is, it has continuous partial derivatives of any order. 

Besides, the arguments of functions (or functionals) 

are sometimes omitted or simplified, whenever no 

confusion can arise from the context. For instance, 

we sometimes denote a function ( ( ))f x t by ( )f x ,

( )f  , or f . 

Now, we collect the definition of homogeneous 

function and several useful lemmas.  

Definition1[25]. For a set of coordinates 

 1, , n
nx x x R   and an 𝑛-tuple 1( , , )  nr r r

of positive real numbers we introduce the following 

definitions. 

(i) A dilation ( )s x is a mapping defined by 

 1
1( ) , , ,   nrrr

s nx s x s x 1( , , ) ,   n
nx x x R  

0 s , where ir  are called the weights of the 

coordinate. For simplicity of notation, the dilation 

weight is denoted by 1( , , )nr r   . 

(ii) A function ( , )nV C R R is said to be 

homogeneous of degree if there is a real number 

R   such that 

 1( ( )) ( , , ), 0 .r n
s nV x s V x x x R      

(iii) A vector field ( , )n nf C R R  is said to 

be homogeneous of degree  if the component if  

is homogeneous of degree  ir  for each i, that is,

1( ( )) ( , , ),  irr
i s i nf x s f x x  ,  nx R  

0, s for 1, ,i n  . 

(iv) A homogeneous p -norm is defined as 

1

, 1
, , 1

i
pp rn n

ip i
x x x p 

     
 
 R . 

For the simplicity, write x  for
,2

x  . 

Next, we introduce several technical lemmas which 

will play an important role and be frequently used in 

the later control design.  

Lemma1[25]. Denote 1( , , )nr r   as dilation 

weight, and suppose 1( )V x  and 2 ( )V x  are  

homogeneous functions with degree 1  and 2 , 

respectively. Then, 1 2( ) ( )V x V x  is also 

homogeneous function with degree of 1 2  with 

respect to the same dilation Δ.   

Lemma2[25]. Suppose : nV R R is a 

homogeneous function of degree   with respect to 

the dilation weight  . Then, the following (i) and 

(ii) hold: 

(i) iV x  is also homogeneous of degree

ir  with ir  being the homogeneous weight of 

ix . 

(ii) There is a constant 0   such that 
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( )V x x
  . Moreover, if ( )V x is positive 

definite, there is a constant 0   such that 

( )x V x
   . 

Lemma3[27]. For all ,x y R  and a constant

1p   the following inequalities hold: 

(i)     12
p p p px y x y   , 

  1 1 1p p p
x y x y      112

pp p x y   

If 1
oddp R , then 

(ii) 12
p p p px y x y    and 

  111 1 2 .
pp pp px y x y    

Lemma4[25]. Let ,c d  be positive constants. Then, 

for any real-valued function ( , ) 0,x y   the 

following inequality holds: 

( , ) ( , ) .
c

c d c d c dd
c d

x y x y x x y y
c d c d

 
  

 

This paper deals with the practical output tracking 

problem by state feedback for time-delay high-order 

nonlinear systems (1). Here, we give a precise 

definition of the problem. 

 

The problem of global practical tracking by a 

state feedback: Consider system (1) and assume that 

the reference signal ( )ry t is a time-varying 1C -

bounded function on [0, ).  For any given 0  , 

design a state feedback controller having the 

following structure 

( ) ( ( ), ( )), ru t g x t y t            (2) 

such that 

(i) All the state of the closed-loop system (1) 

with state controller (2) is well-defined and globally 

bounded on R . 

(ii) For any initial condition, there is a finite 

time 0T , such that         

( ) ( ) , 0    ry t y t t T       (3) 

In order to solve the global practical output tracking 

problem, we made the following two assumptions: 

Assumption1. There are constants 1 2,C C and 

0  such that  




1 2

1

( ) ( ) ( )

1 1 2

( ) ( )

1 2

( , ( ), ( ), ( ))

( ) ( ) ( )

( ) ( )

i i i i

i i i

i

r r r r r r

i

r r r r

i

t x t x t d u t

C x t x t x t

x t d x t d C

  

 


  

 

 

  

     





(4) 

where 

1 11, 0, 1, ,     i i ir r p r i n         (5) 

and 1np . 

Remark1. In the Assumption1, when 0  is a 

high-order growth condition which is actually 

homogeneous (see Definition1) with the dilation (5) 

(For simplicity, in this paper we assume  p q  

with an even integer p and an odd integer q. 

Therefore, ir  is a ratio of two odd integers). 

Moreover, when 0d , it reduces assumptions in 

[4]-[7] and this played an essential role to solve the 

practical tracking problem by a state or output 

feedback. Specifically, when 1ip , 1, ,i n  , it 

encompasses the assumptions in existing results [21].  

Assumption2. The reference signal ( )ry t  is 

continuously differentiable. Moreover, there is a 

known constant 0D , such that 

( ) ( ) , [0, )r ry t y t D t     . 

 

3. STATE FEEDBACK TRACKING 

CONTROL DESIGN 
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This paper deals with the practical output 

tracking problem by delay-independent state 

feedback for high-order time-delay nonlinear 

systems (1) under Assumptions 1-2. To this end, we 

first introduce the following coordinate 

transformation:  

Define 

1 1 1
: , : , 2, , , :

i n

i
r i

x u
z x y z i n v

L L  
      (6) 

where 1 1 10, ( 1)i i ip       , 2, ,i n   and 

1L  is a constant (scaling gain) to be determined 

later. Then, the system (1) can be described in the 

new coordinates iz  as 

1

1

( , ( ), ( ), ),

1, , 1,

( , ( ), ( ), ),

ip
i ii

n n

r

z Lz t z t z t d v

i n

z Lv t z t z t d v

y z y





  

 
  

 






      (7) 

where 

1 1( , ( ), ( ), ) ( , ( ), ( ), ) ,

( , ( ), ( ), ) ( , ( ), ( ), ) ,

2, , .

i

r

i i

t z t z t d v t z t z t d v y

t z t z t d v t z t z t d v L

i n



 

 

   

  







Remark 2. We need to emphasize that the gain 𝐿 

creates an extra freedom in control design. As a 

matter of fact, in the proof of main results, complex 

uncertainties will inevitably be produced in the 

amplification of nonlinearities. Hence, the gain 𝐿 can 

be used to effectively dominate all the possible 

uncertainties. 

Now, using Assumption 1, Lemma 3 and the fact that

1L  , the following inequalities can be obtained: 

1 1

1 1

11

11

11

11

1

1 1 1

2

1
1

1

( , ( ), ( ), )

( ) ( )

( , ( ), ( ), )
( , ( ), ( ), )

( ) ( )

( ) ( )

i

i

i

i

r r

r rr r

r

i
i

rr
rrr i

rr
rrr i

t z t z t d v

C z t y z t d y

C y

t x t x t d u
t z t z t d v

L

C
z t y L z t

L

z t d y L z t d

 
















 





 

 
     

 



 

       

     
 





 2

               

i

C

L
 



Further, the boundedness of ry and ry guaranteed 

by Assumption 2, ensures the existence of constants 

iC , 1, 2i  only depending on constants 

1 2, , , andiC C L  , under which (4) becomes 

  

1 1

1 1

1

1 1 1 2

( ) ( )1
1

1

2

( , ( ), ( ), )

( ) ( )

( , ( ), ( ), )

( )

, 2, ,

i j i ji

i

r r

r r

i

i r r r rv
j j

j

t z t z t d v

C z t z t d C

t z t z t d v

C L z t z t d

C
i n

L

 

 







 

 



 

 
   

 
 

  







 (8) 

where 1 20, 0 C C and

( )
: min 1 , 2 , 1 0

j i
i i

j

r
j i i n

r

 
 

          
  

are some constants.  

Since it can be seen that by definition 

1 1: 1 ( )j j jr p p     so 



Journal of Theoretical and Applied Information Technology 
15th February 2019. Vol.97. No 3 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                            www.jatit.org                             E-ISSN: 1817-3195  

 
947 

 

 1 11

1 1

1 1 1 1

1 1

1 1

1

1

1

1,
1

2, , , 1, , .





 





 
  



 




 


 





 





 

j i ii i
j i i

j j j

j j i i j

j j

j

j j

p pr p

r p p

p p p p

p p

p p

j i i n

  
  



  





 

In what follows, we will employ the homogeneous 

domination approach to construct a global state 

feedback controller for system (7). 

 

3.1.  Stability analysis for Nominal Nonlinear 

System.  

 

First, we construct a homogeneous state 

feedback stabilizer (controller) for the nominal 

nonlinear system without considering the non-

linearities of ( )i , 1, , 1 i n  in (7), i.e.,  

1

1

, 1, , 1,

,
  



 

 



ip
i i

n

r

z Lz i n

z Lv

y z y

     (9) 

Using similar the approach in [14, 26], we can design 

a homogeneous state feedback stabilizer for (9), 

which can be described in the following Theorem1. 

Theorem1. For a real given number 0 , there is 

a homogeneous state feedback controller of degree 

  such that the nonlinear systems (9) is globally 

asymptotically stable. 

Proof.  To prove the result, we use an inductive 

argument (recursive design method) to explicitly 

construct a homogeneous stabilizer for system (9). 

Initial step1.  Let 1 1
1 1 1

r rz z    , where 

1 0z   and  1max 1,i n ir    is a positive 

number. Choose the Lyapunov function 

  11 11

1

2

1 1 1

rz rr

z
V W s z ds

  




 
   , i.e. 

 1 1 12
1 1 0

z r rV W s ds      

From (9), it follows that 

   1 1 122
1 1 1 2 2

r p pV nL L z z                (10) 

where 2z  the virtual controller and it is chosen as 

1 2 2

11 2 1

1

2 11 1 1: , .

r r r
pp r pz n z n

 

   


            (11) 

Step ( 2, , ) k k n .  Suppose at the step k-1, there 

is a 1C , positive definite and proper Lyapunov 

function 1kV  , and a set of virtual controllers 

1 , , kz z   defined by 

1 1

2 2 2 2

1 1 1 1

2 21 1 2 2

1 1

0,

,

,k k k k

r r

r r r r

r r r r
k kk k k k

z z z

z z z

z z z

 

   

   



  

  






 

  

   

   

 
    (12) 

with 0, 1 1i i k      being constants, such 

that 

   1 1 1

1
2

1
1

2
1

( 2)

k k k

k

k l
l

r p p
k k k

V n k L

L z z
  



   






  


    





            (13) 

We claim that (13) also holds at Step k, i.e., there is 

a 1C , proper, positive definite Lyapunov function 

defined by 

 
  

*

1 1

2
*

( ) ( ) ( ),

( )
kk kk

k

k k k k k k

rz rr
k k kz

V z V z W z

W z s z ds
  



 

 

 

 
   (14) 

and virtual controller 1 1
1

k kr r
k k kz    
    such 

that 
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   

2

1

2
1 1

( 1)

k k k

k

k j
j

r p p
k k k

V n k L

L z z
  







  
 

    





.             (15) 

Since the prove of the claim (15) is very similar [4-

5, 14], so omitted here. 

Using the inductive argument above, we can 

conclude that at the 𝑛-th step, there exists a state 

feedback controller of the form 

1

1 1

1

n

in n

rn
rr r

n n i i
i

v z


   



 



 
    

 
      (16) 

with the 1C , proper and positive definite Lyapunov 

function,  

  
*

2
*

1

ii ii

i

n rz rr
n iz

i

V s z ds
  


 



          (17) 

we arrive at 

2

1

,
n

n j
j

V L 


                             (18) 

where i ir r
i i iz z    and 

, 1, ,i n i i n      are positive constants. 

Thus, the closed-loop system (9) and (16) is globally 

asymptotically stable.  

 

3.2. Tracking control design for the time-delay 

nonlinear system (1) 

 

Now, we are ready to use the homogeneous 

domination approach to design a global tracking 

controller for the system (1), i.e., state the following 

main result in this paper. 

Theorem 2. For the time-delay nonlinear system (1) 

under Assumptions 1-2, the global practical output 

tracking problem is solvable by the state feedback 

controller 1 nu L v  in (7) and (16)． 

Proof.    

Step1. We first prove that u  preserves the 

equilibrium at the origin. From (16), we have 

1

1 1

1

n

in n

rn
rr r

n n i i
i

v z


   



 



 
    

 
      (19) 

By which and the definitions of ir ’s and 𝜎, we 

easily see that 1 nu L v  is a continuous function 

of z  and 0u  for 0z . This together with 

Assumption1 implies that the solutions of z  

system is defined on a time interval [0, Mt ], where 

0Mt   may be a finite constant or +∞, and u

preserves the equilibrium at the origin. 

Step 2.  

Define the compact notations  

 1, , , 
T

nz z z  1 1
2( ) , , ,  n

Tp p
nE z z z v and 

 2
1 2( ) , , ,  n

T

nF z L L   .    (20) 

Using the same notation (6) and (20), the closed-loop 

system (7) - (16) can be written as the following 

compact form: 

( ) ( )z LE z F z                          (21) 

Moreover, by introducing the dilation weight 

1( , , )nr r   , from Definition 1, it can be shown 

that nV  is homogeneous of degree 2𝜎 − 𝜏 with 

respect to  . 

Hence, adopting the same Lyapunov function (17) 

and by Lemm2 and Lemma 3, it can be concluded 

that 

2
1 1

( ) ( )

( )

n n
n

n n
ii

i

V V
V z L E z

z z
V

F z m L z
z

  

 
 

 


  




         (22) 

where 1 0m is constant. 

By (8), Assumption 1 and 𝐿 > 1, we can find 
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constants 0i   and 0 1i   such that 

 

( )
( ) ( )

1
1

12 2

( ) ( )

( ) ( )

j i
i i

j i
j j

i ii

i i

i

r
r ri

r k
r r

j j
j

r r
i

C L z t z t d

C C
L z t z t d

L L

 
 

 
 






 





 
 



 
    

 

   

 (23) 

and noting that for 1, , i n , by Lemma2, 

 n iV z is homogeneous of degree 2   ir  ,  

2
2 ,

 






irn

i

V
m z

z
 

2 0m           (24) 

and by 

2 212
2 1

21
2 2 2

2 ( )
1

1

2 ( )
21 1

2 1

2 ( )
21

2 2 (1 ) ( ) (1 )

,

2
:

2

2

i ii

i i i

i

i

i

i i

i

i i

i i

i
i

i i i i

r r

i

r
i

r

r

r

C
m z L z

L L
r

m C m L z

r
L

L

m L z L
L

m L z
L

   
  



 


 

 
 

 

 


    



 



 






   
   







 


 

  




     



 
 

    
 

    
 

 

 

So,  

 

2
2

1 2

21 1
2 2

2 ( )
2

2 (1 ) ( ) (1 )

2 21 1
2 2

( ) ( )

(1 ) (1 )

( )

(1 ) (1 )

( )

i

i ii

i

i i

i
i i

i i i i

ii i

i

rn
i

i

r r
i

i i

r
r r

r

r
i i

r

V
m z

z

C
L z t z t d

L

m L z m L

z z t d
L

m L z m L z

z t d

 

 


 

 
  

    

   







 



 

 


 
 

 



  

      

  
 









 
   

 

   

 

   

 
2 ( )

1
,

i

i

r

L

 


 



(25) 

where 2 2: m C , 
2

1
2

 
ir 


 , 1

2


ir


, 

and 
2 (1 )

(1 ) 1
 

   


i
i i

ir

 
 


. 

Substituting (25) into (22) yields 

2
1 2

2 2
2

1 1

2 ( )

1
1

( ) ( (1 (1 )

(1 ) ( ) )i ii i

i

i

n

n n
r r

i i

rn

i

V z L m z m

L z m L z z t d

L



    

 











   
  

 





    

  



 





(26) 

where  max , 1, ,i i n    . 

By Lemma4, there exists a constant 3 0m  such 

that 

2
2

2 2
3

(1 ) ( )

( ) ,

i ir r
m z z t d

z m z t d

  

 

   
 

 

 

  
           (27) 

which yields 

2
1 2

2 2
3

1 1

2 ( )

1
1

( ) ( (2 (1 ))

( ) )i i

i

i

n

n n

i i

rn

i

V z L m z m

L z m L z t d

L



  

 









 
 

 





    

 



 





,      (28) 

Construct a Lyapunov-Krasovskii functional as 

follows: 

  
*

2
*

1

2

( ( )) ( ( )) ( ( )),

,

( ( )) ( ) ,

ii ii

i

n

n rz rr
n iz

i

t

t d

V z t V z t U z t

V s z ds

U z t z s Mds

  




 





 

 







    (29) 

where M is a positive constant. Let 

1
3 1

.i
n

i
M m L 


   It follows from (28) and (29) 

that 

 1 2 3 1

2 1
1

(2 (1 ) )

( ) .

i
n

i
V L m m m L

z t
L













 

     





  (30) 

Hence, by choosing a large enough L as 

 2 3 1max 1, (((2 (1 ) ) ))   L m m m  , where 



Journal of Theoretical and Applied Information Technology 
15th February 2019. Vol.97. No 3 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                            www.jatit.org                             E-ISSN: 1817-3195  

 
950 

 

 1min   i n i  and 2 ( )
1

1




 i

n
r

i

    the 

inequality (30) becomes 

2 1
1

( ( )) ( ) . 
  V z t L z t

L





            (31) 

In (29), ( )nV z  and ( )U z  are homogeneous of 

degree 2   and 2  with respect to  , 

respectively. Therefore, it follows from Lemma2 that 

there exist positive constants 1 2 1 2, , and     

such that  

2 2
1 2( ) ( ( )) ( )

 
  nz t V z t z t
            (32)  

and    
2 2

1 2( ) ( ( )) ( )  z t U z t z t
      (33)                  

Moreover, by Lemma 4, we have 

 
 

1
2 22

2

2
2 2

2

( ) ( )

2
( )

2 2

L
z t L z t

L L

L
L z t


   

  
   




   
 

 
 






        


 

    (34) 

Then, we have  

 

2
2

2 22
( ( )) ( )

2
V z t L z t

L

 
 

  

 




 
     (35) 

or  

 

2
2

22
2 2

1
( ( )) ( )

2
V z t L z t

L

 
 

  

 
 



 
  (36) 

where 2 2
2

:
2

   
 

  


.  

Therefore, it follows from (29) and (35) that 

 

 
 

2
2

22
2

2 1
2 12

2

1
2

( ( )) ( )
2

2

1
( ( )) ,

V z t L z t
L

LL

V z t

 
 

  

  
  

 


 







 




 
   
 
 

 

  



(37) 

where  
 2 1

1 2 12
22




 
LL

  
  

 


. 

That is  

 2 2
1( ( )) t td

e V z t e
dt

                    (38) 

taking integral on both sides, 

 2 2
1( ( )) ( (0)) 1  t te V z t V z e          (39) 

Hence, there exists a 0T  , for all t T   

 2 2
1 1( ( )) ( (0)) 1 3    t tV z t e V z e     (40) 

from which it is clear that 1   rz y y  can be 

rendered smaller than any positive tolerance with a 

sufficiently large L .  

 

3.3. Extension of main result   

 

In this subsection, using homogeneous 

domination approach, we will show that the 

triangular growth condition as required in 

Assumption 2 is not necessary to achieve the global 

practical tracking of (1) under the following more 

general assumption.  

Assumption 3. 

There are constants 

1 20, 0, 1, 0 1,    iC C L  and 0 such that 

 1
1

1

2

( )( )( )

,

i
i

j
j

i

i j j

i

rr
rn r j jji

j

x t d tx t
C L

L L L

C

L




  










 
 
  
 
 
 




     

                                (41) 

where  1 1 10, 1, 1 ,   i i ir p    and  

1 0, 1, ,     i i ir p r i n . 

Since it is apparent that Assumption 1 implies 



Journal of Theoretical and Applied Information Technology 
15th February 2019. Vol.97. No 3 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                            www.jatit.org                             E-ISSN: 1817-3195  

 
951 

 

Assumtion 3 from inequality (41), the condition of 

Assumption 3 is more weaker than that of 

Assumption 1.  Therefore, the following theorem is 

a more general result achieved under Assumption 3. 

Theorem 3.  Under Assumptions 2 and 3, the 

global practical output tracking problem of system 

(1) can be solved by a state feedback controller of 

the form (19). 

Proof.  Similar to (23), Assumption 3 will directly 

lead to (25). Rest of the proof is similar to that of 

Theorem 2 and hence is omitted here. 

 

4. AN ILLUSTRATIVE EXAMPLE AND 

SIMULATION  

In this section, we give a simple numerical 

example to illustrate the correctness and 

effectiveness of the theoretical results by considering 

the following nonlinear system 

5 3 1 3
1 2 1

5 3
2 23

1 3
3 3

1

( ) ( ) ( )

( ) ( ) 2 ( )

( ) ( ) ( )

( ) ( )

  

 

 









x t x t x t d

x t x t x t

x t u t x t

y t x t

     (42) 

where 1 2 35 3, 5 3, 1  p p p  and d  represent 

a time-delay parameter. Our objective is to design a 

state feedback practical output tracking controller 

such that the output of the system (42) tracks a 

desired reference signal ry , and all the states of the 

system (42) are globally bounded. 

Clearly, the system is of the form (1). It is worth 

pointing out that although system (42) is simple, it 

cannot be solved the global practical tracking 

problem using the design method presented in [4-5] 

and [7] because of the presence of time-delay term 

1 3
1 ( )x t d . Choose 2 3  and 1 1,r   then 

2 3 1 r r  and 4 5 3r . Further, choose the 

reference signal sin( 3) sin ry t t . Then, by 

Lemma 4, it is easy to obtain  

41 1
33 3

1 1 1

55
33

1

( ) ( ) 2 ( )

1 4
( ) 2

5 5

z t d z t d

z t d

     

  
,  

 2 3 5 33 2 5 2
2 2 2 2

3 2
( ) 2 2 2

5 5
    z z z , 

1 3 1 3 5 34 3 5 3
3 3 3 3

1 4
( ) 2 2

5 5
    z z z  

and  

sin( 3) sin 2,

1 4
cos( 3) cos

3 3

r

r

y t t

y t t

  

  
. 

Clearly, Assumptions 1-2 holds with 1 3 5,C

2 16 5C and 4.D  According to the design 

procedure proposed in Section 3 (by Theorem2), we 

can obtain a state feedback tracking controller  

   5 3
49 25 24 25 3 5

3 2 12 2 2 ru L L x L x x y     (43) 

In the simulation, by choosing the initial values as 

1( ) 3,z  2( ) 5, z  3( ) 2, z  [0, ], d where 

1d  and the reference signal sin( 3) sin ry t t . 

Then, we have the following (i) and (ii). 

(i) When the scaling gain L  is chosen as 100L , the tracking error obtained is about 0.45 as 

shown in Fig. 1. 
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Fig. 1(a). Tracking error  ry y  for 100L . 

 

 

Fig. 1(b). The trajectories of 1( )x t , ( )ry t  for 100L  

 

(ii) When the scaling gain L  is chosen as 700L , then the tracking error reduces to about 0.1 as 
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shown in Fig. 2.  

 

Fig. 2(a).  Tracking error  ry y  for 700L . 

 

Fig. 2(b). The trajectories of 1( )x t , ( )ry t  for 700L  

 

 

0 2 4 6 8 10 12 14 16 18

time t

-0.5

0

0.5

1

1.5

2

2.5

3

y-yr

0 2 4 6 8 10 12 14 16 18

time t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

y
yr



Journal of Theoretical and Applied Information Technology 
15th February 2019. Vol.97. No 3 

 © 2005 – ongoing  JATIT & LLS    

 

ISSN: 1992-8645                            www.jatit.org                             E-ISSN: 1817-3195  

 
954 

 

5. CONCLUSION 

In this paper, we have studied the practical output 

tracking problem for a class of uncertain high-order 

time-delay nonlinear systems under a homogeneous 

condition. First, we design a homogeneous state 

feedback controllers have been constructed with 

adjustable scaling gains. Then, with the help of a 

homogeneous Lyapunov-Krasovskii functional, 

we’ve redesigned the homogeneous domination 

approach to tune the scaling gain for the overall the 

closed loop systems. It is shown that an appropriate 

choice of gain will enable us to globally track for a 

class of uncertain non-linear systems in finite time. 

Moreover, the proposed approach can also widen the 

applicability to a broader class of systems with non-

triangular structure. It should be noted that the 

proposed controller can only work well when the 

whole state vector is measurable. Therefore, a 

natural and more interesting problem is how to 

design feedback output tracking controller for the 

time-delay nonlinear systems studied in the paper if 

only partial state vector being measurable, which is 

now under our further investigation. 
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